Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Int J Mol Sci ; 23(19)2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2043766

ABSTRACT

Leveraging machine learning has been shown to improve the accuracy of structure-based virtual screening. Furthermore, a tremendous amount of empirical data is publicly available, which further enhances the performance of the machine learning approach. In this proof-of-concept study, the 3CLpro enzyme of SARS-CoV-2 was used. Structure-based virtual screening relies heavily on scoring functions. It is widely accepted that target-specific scoring functions may perform more effectively than universal scoring functions in real-world drug research and development processes. It would be beneficial to drug discovery to develop a method that can effectively build target-specific scoring functions. In the current study, the bindingDB database was used to retrieve experimental data. Smina was utilized to generate protein-ligand complexes for the extraction of InteractionFingerPrint (IFP) and SimpleInteractionFingerPrint SIFP fingerprints via the open drug discovery tool (oddt). The present study found that randomforestClassifier and randomforestRegressor performed well when used with the above fingerprints along the Molecular ACCess System (MACCS), Extended Connectivity Fingerprint (ECFP4), and ECFP6. It was found that the area under the precision-recall curve was 0.80, which is considered a satisfactory level of accuracy. In addition, our enrichment factor analysis indicated that our trained scoring function ranked molecules correctly compared to smina's generic scoring function. Further molecular dynamics simulations indicated that the top-ranked molecules identified by our developed scoring function were highly stable in the active site, supporting the validity of our developed process. This research may provide a template for developing target-specific scoring functions against specific enzyme targets.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Humans , Ligands , Machine Learning , Molecular Docking Simulation , Research
2.
PLoS One ; 15(12): e0244176, 2020.
Article in English | MEDLINE | ID: covidwho-992710

ABSTRACT

Coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory coronavirus 2 (SARS-COV-2) is a significant threat to global health security. Till date, no completely effective drug or vaccine is available to cure COVID-19. Therefore, an effective vaccine against SARS-COV-2 is crucially needed. This study was conducted to design an effective multiepitope based vaccine (MEV) against SARS-COV-2. Seven highly antigenic proteins of SARS-COV-2 were selected as targets and different epitopes (B-cell and T-cell) were predicted. Highly antigenic and overlapping epitopes were shortlisted. Selected epitopes indicated significant interactions with the HLA-binding alleles and 99.93% coverage of the world's population. Hence, 505 amino acids long MEV was designed by connecting 16 MHC class I and eleven MHC class II epitopes with suitable linkers and adjuvant. MEV construct was non-allergenic, antigenic, stable and flexible. Furthermore, molecular docking followed by molecular dynamics (MD) simulation analyses, demonstrated a stable and strong binding affinity of MEV with human pathogenic toll-like receptors (TLR), TLR3 and TLR8. Finally, MEV codons were optimized for its in silico cloning into Escherichia coli K-12 system, to ensure its increased expression. Designed MEV in present study could be a potential candidate for further vaccine production process against COVID-19. However, to ensure its safety and immunogenic profile, the proposed MEV needs to be experimentally validated.


Subject(s)
COVID-19 Vaccines/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Amino Acid Sequence/genetics , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/genetics , COVID-19 Vaccines/therapeutic use , Computational Biology , Epitopes, B-Lymphocyte/immunology , Epitopes, T-Lymphocyte/immunology , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , SARS-CoV-2/pathogenicity , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL